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A spin-lattice Hamiltonian for direct processes (the dynamic spin Hamiltonian) is defined which contains 
the effective spin operator and nuclear spin operator used in the static spin Hamiltonian. From the form 
of the dynamic Hamiltonian, certain combinations of the lattice operators can be identified as the dynamic 
analog of the static spin Hamiltonian parameters. The direct relaxation rates can be expressed in terms of 
spectral densities of the products of the dynamic spin Hamiltonian parameters. Assuming that the inter­
action of the ion with the crystal is adequately described by a crystal field, the sources of which are charac­
terized by a symmetry group, it is possible to express the spectral densities involved in the spin-lattice 
relaxation in terms of the spectral densities of the normal modes of the complex. We use the symmetry of the 
complex and the crystal to limit the number of independent spectral densities of the normal modes without 
making any detailed assumptions about the lattice phonons nor the way that the sources of the crystal 
field participate in the lattice vibrations. Particular attention is given to the case of a Kramers doublet with 
hyperfine structure, and the matrix elements of the spin-lattice Hamiltonian between the eigenstates of the 
static spin Hamiltonian are given explicitly. These results are applied to the case of divalent cobalt in a 
nearly cubic field, and it is found that all twenty two of the relaxation rates between levels for which the en­
ergy separation is ~g$H for any direction of the applied field may be expressed in terms of four constants 
if the nuclear quadrupole interaction is ignored. The effect of the dynamic hyperfine interaction is found to be 
surprisingly large. Since all of the relaxation rates depend on the direction of the applied magnetic field, the 
four constants can be vastly overdetermined by experimental measurements of the direct relaxation 
processes. 

I. GENERAL THEORY 

SEVERAL recent theoretical papers1-4 have done 
much to suggest decisive experiments for the 

clarification of the spin-lattice relaxation processes in 
paramagnetic salts. The present paper is an extension 
(with some modifications) of that work to a discussion 
of the direct relaxation processes which can occur in a 
dilute paramagnetic salt with resolved hyperfine 
structure. These relaxation processes, which are 
important in dynamic nuclear orientation experiments, 
have been treated in a phenomenological manner by 
Abragam5 and in more detail but in the same spirit by 
Jeffries.6 The present treatment is an effort to relate 
these processes to the more fundamental processes of 
lattice vibrations. 

In Sec. 1, we begin with a discussion of the dynamic 
crystal field which parallels that given by Van Vleck7 

and, for the most part, serves to define our notation. 
We conclude Sec. I with a definition of the dynamic 
spin Hamiltonian in a way that is suitable for the 
treatment of a wide variety of problems. In Sec. 2, 
the relaxation rates between the eigenstates of the 
static spin Hamiltonian are calculated and expressed 
in terms of the spectral densities of the products of the 
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dynamic spin Hamiltonian parameters which have a 
semiclassical interpretation that is frequently stressed 
in discussions of nuclear magnetic relaxation.8 In this 
section, the spectral densities of the products of the 
spin Hamiltonian parameters are formally related to 
those for the products of the normal modes of the 
complex which is assumed to produce the crystal field. 
We discuss the relation of the number of independent 
spectral densities to the symmetry group of the complex 
and the over-all crystal symmetry which is reflected 
in the properties of the lattice vibrations. Sec. 3 is more 
specialized, and is devoted to the detailed evaluation of 
the matrix elements of the dynamic spin Hamiltonian 
for a Kramers doublet with electric and magnetic 
hyperfine interactions and a strong external magnetic 
field. In part II, we apply the method to divalent cobalt 
in a nearly cubic field. 

1. Spin-Lattice Hamiltonian 

From the point of view of crystal field theory, the 
energy levels of ions in crystals are eigenstates of the 
Hamiltonian 

WT^WI+VO+PR- (L+2S), (1) 

where Wi is the Hamiltonian for the free ion and VQ 
is the static crystal field. The spin Hamiltonian is 
useful when a restricted set of the eigenstates of WT, 
say \//hk (where h=l, 2, • • •, 25+1 and k=l, 2, • • •, 
2/+1), are isomorphous with a set of functions 

4>hk= L Chkmm'\Sm)\Imf)J (2) 

8 A. Abragam, The Principles of Nuclear Magnetism (Clarendon 
Press, Oxford, 1961), Chaps. VIII and IX. 
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which are linear combinations of the products of 
eigenfunctions of the effective spin operator S and the 
nuclear spin operator I. The spin Hamiltonian Xs is 
a function of I and S such that9,10 

(^hk\WT\^hk)^t*kk\Xa\4>hk). (3) 

The coupling between the ions and the lattice vibra­
tions in the crystal field view is produced by the 
modulation of the crystal field by the motion of the 
sources relative to the paramagnetic ion. We assume 
that the sources of the crystal field are a number of 
nearby molecules or ions which, together with the para­
magnetic ion, we designate as a complex without any 
implications concerning the nature of the chemical 
bonding. If one describes the motion of the sources in 
terms of a set of generalized coordinates Q/X), the dy­
namic crystal potential to first order in the displace­
ments from the equilibrium positions is 

/dV(r)\ 

where F/X)(r) are operators in the space of the ionic 
wave functions and the generalized displacements are 
functions of the lattice phonon operators 

&•<»= £ & ( X ) ( K ^ ) = E<*i<M(K#w)(<**p.+*K»-t), (5) 
Kpoi Kpu 

in which K is a unit vector in the direction of propaga­
tion of the phonon, o> is the angular frequency, and p 
is the polarization index. The choice of the generalized 
coordinates for describing the motion of the sources 
relative to the paramagnetic ion will depend not only 
on the nature of the complex but on the symmetry of 
the lattice vibrations which are the driving force for 
the displacements. 

The evaluation of spin-lattice relaxation rates be­
tween the states (h,k) and (h\kf) requires the calcula­
tion of (i\(^hk\ V'\^h'k')\f\ where \i) and | / ) are lat­
tice states. We wish to replace this calculation by the 
analogous one for the states 4>hk, with the use of a 
spin-lattice Hamiltonian defined so that 

<f|<^l^l^'*'>l/>=<*K***|3CBL|*^>|/>, (6) 

where it is clear that XSL will contain the nuclear spin 
and effective spin operators as well as lattice operators. 

Mattuck and Strandberg1 have given an explicit 
calculation of a spin-lattice Hamiltonian [their Eq. 
(44)] for an ion with an orbital singlet lowest and no 
hyperfine structure which is almost, but not quite, in 
the form required by our definition. Their Hamiltonian 
contains a quantity guv and an operator S which we 
would replace by equivalent operators in the effective 
spin. 

9 W. Low, in Solid State Physics (Academic Press Inc., New 
York (I960), Suppl. II. 

10 G. F. Koster and H. Statz, Phys. Rev. 113, 445 (1959). 

Aside from the presence of lattice operators 3CSL is 
precisely the same as the change 3Qs' in the static spin 
Hamiltonian under a static crystal-field perturbation of 
the same form as Vf. This correspondence is very useful 
in the estimation of the importance of the terms in 
3CSL. For example, if it is known experimentally or 
theoretically that the hyperfine interaction is more 
sensitive to the crystal field than the Zeeman splitting 
(at some fixed applied field), then the hyperfine inter­
action may dominate the direct spin-lattice relaxation. 

For the remainder of this section, we assume that the 
spin-lattice Hamiltonian has been calculated according 
to the scheme described above. In order to keep the 
complexity of notation to a minimum consistent with 
the discussion of the effects of the hyperfine structure, 
we shall restrict our considerations to the case in which 
the lowest eigenfunctions of WT are a Kramers doublet 
with hyperfine structure. The static spin Hamiltonian 
will have the form 

3Cs=0H g S + I A S + I P I, (7) 

where the effective spin S is one-half. The parameters 
g, A, and P are second rank tensors. The number of 
independent components of these tensors is restricted 
by the symmetry of the static crystal field. The dynamic 
spin Hamiltonian will have the form 

3CsL=/3H.g'.S+I.A'.S+I.P'.I. (8) 

The second rank tensors g', A', and P' in the present 
approximation are linear functions of the phonon 
operators. It is desirable to write (8) in a more compact 
notation 

3CSL=L C V " W a \ (9) 
a ij 

where a takes on the values g, A, and P. £/\-/a) are spin 
operators and M#(a) are linear combinations of phonon 
operators. Rather than expand the latter directly in 
terms of phonon operators, it is more useful for our work 
in the next section to consider the expansion in the 
generalized coordinates of the complex: 

Mt/°>=LiWaWX). (io) 
Xr 

This is also the form in which the results will be obtained 
if the perturbation V is applied in the form given by (4). 

2. Spectral Densities and the 
Utilization of Symmetry 

We assume that the general features of the statistical 
aspects of spin-lattice relaxation are familiar.8 The 
transition rate per unit population from a level a to a 
level b of a spin system is related to that for the reverse 
process by 

Wa^b=Wb^alexp(Ea-Eb)/kTli, (11) 

where T is the lattice temperature. Abragam8 has 
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shown that 

x\^ll{eM^\})U\Mml^\e) 
LNQ *f 

Xe-wk»5(Ee~Ef+fu*)\ (12) 

in which iVo=]Le exp(—Ee/kT), h^=Ea—Eb, and the 
sums will include integrals over continuous spectra. 
After the average over the initial states | e) and summing 
over final states | / ) of the lattice, one may write 

\h/cc0ijlm 

X<o|£V>|&X*|tfi«wtl«>. (13> where 

JH-.!.<"» («) = Z (dai (nKpu+11 !£„<"> 1 n*„) 
P J 

X(nKp. | Mmlw | nKjm+l)f>p(K,m) (14) 

is called the spectral density tensor for the a and fi 
components of the dynamic spin Hamiltonian. pp(K,«) 
is the density of phonon states per unit energy interval 
and per unit solid angle with the polarization p, and 
d&K is a differential solid angle in the direction K. The 
state vectors \tiKpJ) are representations of the lattice 
states labeled by the number of phonons in each mode. 
Since the thermal average has been taken already, the 
squares of the matrix elements of the lattice operators 
between these states are 

|(wKpW |aKpW |»Kp«+l)|2=Cl-exp(-fe/^r)]-1. (15) 

Substituting (10) into (14), we obtain 

where 

K / X ) , e / ^ 1 = E JdnKPP(K&)(nK9.\Qr^nKp.+ V 

X(nKp„+l\QsW\nKpJ> (17) 

are the spectral densities for the products of the general­
ized coordinates. 

In a semiclassical view of the lattice, the spectral 
densities defined in (14) would be the Fourier transform 
of the correlation function of the time-dependent spin 
Hamiltonian parameters. Our spectral density is 
defined for those transitions in which the lattice absorbs 
energy. In the limit of infinite lattice temperature, the 
spectral densities for absorption and emission of energy 
by the lattice are the same and agree with the semi-
classical result. The spectral densities defined by (17) 
have a corresponding interpretation, 

We consider the situation in which the complex is 
characterized by a symmetry group Gi and the crystal 
by the symmetry group G2, and we further assume that 
one of these groups is a subgroup of the other. It is 
then clearly permissible to choose the generalized 
coordinates so that Q/x) is the jth component of the 
Xth irreducible representation of the smaller of the two 
groups which we designate as G8. Let T be a symmetry 
operation of G8 and K'=T(K) be the unit vector 
produced from K by the symmetry operation. Since this 
new direction is equivalent to the initial one as far as 
either the complex or the crystal are concerned the 
following statements may be made: Independent of any 
model for the phonons, the phonon modes may be 
separated into the same set of polarizations for the 
direction of propagation K' as for K, and these polariza­
tions correspond to the same displacement vectors rela­
tive to K' as the original set did relative to K. It 
is clear then that the displacements of the compo­
nents of the complex by the phonon traveling in the 
direction K' is the same as the set produced by the 
phonon traveling in the direction K and with the 
corresponding polarization after that set has been 
transformed by the symmetry operation T. In addition 
pp(K,w)=pp(K/,cu). Therefore, we may average (17) 
over the phonons traveling in equivalent directions to 
obtain 

T 

X<nKpa,+ l | [ r e ^ > ] t | W K p w ) , (18) 

where n' is the number of symmetry operations in Gs 

and the sum over T is over all symmetry operations in 
G8. It follows from the orthogonality theorem for the 
representation matrices of T that11 

K ^ W J ^ W o O M * . (19) 

If the same representation occurs more than once, the 
cross products of corresponding elements will not vanish 
and if (VX)/ is an element of a repeated representation, 
then we have 

[ft(X),,&(x)]w=^(x)(co)5r8 (20a) 
and 

ZQr™',Q.™'l.=C™'(<*)6n, (20b) 

so that if the irreducible representation is repeated 
n times there are »(n+l) /2 independent constants 
introduced. 

The number of irreducible representations which 
contribute to the spectral densities defined by (16) 
depend on the matrix elements of the operators F / x ) . 
These operators transform in the same way as the 

11 V. Heine, Group Theory in Quantum Mechanics (Pergamon 
Press, New York, 1960), p. 139. 
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corresponding Q's. There is clearly only one independent 
constant F(X) for each irreducible representation. The 
eigenstates of Wj+ VQ consist of degenerate sets which 

irreducible representations of the group which are 
characterizes VQ. Since G8 is a subgroup of the group 
defined by the Hamiltonian, the eigenfunctions of (1) 
can be written as linear combinations of ionic states 
which transform as the irreducible representations of Gs. 

and the matrix elements of V operators are 

(21) 

(fk>k'\ViW\fhk)= E A^h.k>ly*fa\ij\vkyt)V<*H22) 

in which we have used the generalized Wigner coeffi­
cients for irreducible representations.12 From (21), it is 
apparent that the number and nature of the irreducible 
representations which contribute to the direct relaxation 
processes is governed by the nature of the states and the 
normal coordinates. Van Vleck7 has considered the 
limitations on the number of normal modes for several 
cases and Orbach2 has treated others. In general, if the 
matrix element of F / x ) does not vanish and the irreduc-
matrix element of F/X ) does not vanish and the irre­
ducible representation X occurs n times, there are 
n(n+l)/2 independent constants introduced into (16) 
of the form 

[F(x)]2C(X)(£0)j 7<x)vrcx)/j5(X)(ft,)> ...y etc. 

3. Calculation of Spin-Lattice Relaxation Rates 

A. The Static Spin Hamiltonian 

The Hamiltonian (7) when specialized to effective 
axial symmetry may be written 

Xs=Pg\ \HJS,+Pgl(HJSx+HuSM)+AIgSM 

+B(IJx+IySy)+PIs\ (23) 

where the z axis is the symmetry axis of the complex 
and the x, y axes are any orthogonal pair perpendicular 
the the symmetry axis. If the magnetic field is the 
largest term in (23), one should apply perturbation 
theory in a representation in which the Zeeman interac­
tion is diagonal. This is accomplished by choosing 
states for which the electronic spin is quantized in the 
direction g-H. In the treatment of the hyperfine 
interaction, the nuclear spin should be quantized in the 
direction (g-H)-A so that the part of the interaction 
which is diagonal in the electronic spin is also diagonal 
in the nuclear spin. The direction of these axes relative 
to the symmetry axis is shown in Fig. 1 for the case in 
which the magnetic field is in the xz plane and at an 
angle 6 with the z axis. The angles \f/ and x defined in 
the figure are given by the relations tan^= (gi/g\\)tenO 

12 J. S. Griffith, The Theory of Transition Metal Ions (Cambridge 
University Press, New York, 1961), p. 168. 

FIG. 1. A diagram of the coordinate axes used in the quantization 
of the spin Hamiltonian when the g and A tensors are anisotropic. 
The axis z\ is in the direction of H, the z2 axis is in the direction 
of g-H, and the zz axis is in the direction of (g-H) • A. The angles 
0, ^, and x are defined here for use in the text. 

and tan%= (B/A)Xan4/. In order to obtain the appro­
priate components when the three vectors H, S, and I 
are referred to different axes in terms of their values 
when all of the vectors are referred to the symmetry 
axis, a mixed coordinate transformation must be made: 

g*(0)=j:Rik(0)gMi(R-%ffl, 

^ ( « ) = E ^ ( x ) i i « ( 8 - 1 W ) 1 
kl 

Pa(o)= T.R<k(x)P*i(R-lh(x), 
kl 

(24) 

where the matrix R(U) is that for the transformation of 
a vector by the rotation of the coordinates by the angle 
0 about the y axis. The components of the tensors on 
the right-hand side are referred to the symmetry axis. 
In writing the Hamiltonian, we omit explicit indication 
of the dependence on 0 and let it be understood that 
Greek subscripts £, t?, and f refer to the axes defined in 
Fig. 1 and may be different axes for the nuclear or 
electron spin operators. The spin Hamiltonian takes the 
form 

3Cs=GnS t+A nItSt+At+I{S++A+tI+St+A-+I^S+ 
+ ^ + + / + 5 + + P r f / r

2 + P r + ( / r / + + / + / r ) + P + - / + / -
+P+ + /+ /++Hermit ian adjoint, (25) 

where 

h=104€rM„); 
= iP„=P+_. 

Gn=0Hgn; Ai+=lAn) A+t=0; A. 

A+i.=l(AH-An); P f +=JPr^; P ^ 

The components A^, A^, An^ A^, and A^ are zero 
because of the form of the transformation (24). Constant 
terms in the quadrupole interaction have been omitted. 
When the transformations (24) are carried out, Eq. (25) 
gives results which agree with Bleaney.13 

For our discussion of relaxation processes only the 

J B. Bleaney, Phil. Mag. 42, 441 (1951). 
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first-order expressions for the energy eigenvalues are components must be transformed by Eqs. (24). The 
required: spin lattice Hamiltonian may be written in precisely 

n i D 2 i D 2 n&\ t h e s a m e * o r m a s (25) ex^Pt ^ a t the parameters are 
Eam=Gna+Anma+Pnm - ^P^m , (26) p r i m e d # Because there is less symmetry in the dynamic 

where a and ware eigenvalues of S r and J r. If we assume tensors, the expressions for the parameters are more 
that the quadrupole interaction is much smaller than involved when they are expressed in terms of Cartesian 
the magnetic hyperfine interaction, we may write the components. In the dynamic analog of (25), we have 
first-order wave function as ^ . M T T M W , . A 

Gf4/=(0ff/2) ( # / - * # , ) ; 

(h,m\=(hM+J: (27a) Al+ AAn lA^h 

' » " (£_»...-£..»») A+t' = i(Au-M*'); (28) 
|*-» -•>= | - i , « ' > A-+' = l(Aii'+A„')+ii(Ai/-A,t')i 

' (a,m"\K>\-\,m<) A^-HAu'-A^-WAn'+AJ). 
+ £ \a,m"), (27b) 

am" {E^,m'—Eaim") xhe components of the P' tensor have the same form 
, . , .. , „„ as those of A'. 

where X is the nondiagonal part of Xs. W e s h a J 1 w o r k o u t t h e m a t r i x e l e m e n t s o f t h e 
o ^ *r J • 7-7 , s*r aw r **• TJ -n • dynamic spin Hamiltonian between those states for B. The Matrix Elements of the Spin-Lattice Hamiltonian J,. , , ^ ,.~ £ ,, , r ^ r̂ r J r which the energy difference is of the order ot G -̂. I he 

We assume that the dynamic tensors have been relaxation rates for the other transitions are several 
calculated for the case in which all vectors are referred orders of magnitude slower because of the co2 depend-
to the symmetry axes. To calculate matrix elements ence of the density of phonon states. We find for those 
between the eigenstates of (25), the dynamic tensor matrix elements 

<^.»|3CsL|^.«'> = <iw|jCSL|-iw'> 

f <£,«13G'|<j,m")(a,m"|5CSL| -§,»'> <*,»| JCSL| *,»"><*,*»" |3C'| -* ,« ' ) l 
= E + • (29) 

*"'l {Eiim-Eff,m") (E-\,m—Eff%m») J 

When these are worked out in detail, we obtain 

mAt+ (A+i'A-++A-i'A++) 
(^,m\5CSL\^hm) = G^+mA^ (Gn'+mAn') [C2(w)+C2(w-1)] 

Gn 2G# 
(Pt+'A-+-PtJA++) 2 (A-+'Pt+-A++'PtJ) 

[ 2 / ( / + l ) - 6 w 2 ] + {2w[2 / ( /+ l ) -2w 2 - l ] } Gn 
(29a) 

<^f„|3eBL^-| t^.i> = C(»)(i4_ f ' Z(2m+l)(At+A^+A^An
f)+2Gx'A^ 

1 2Gn 
(2m+l) 

-lA^Pn
f-At+P^+2A++P^f-2A^P^'] 

Gn 

2 
l(2m+l){(2m+l)At+

f+2G^f}P^+UO(m+l)+C"(m-l)}P^A^ (29b) 

fa,m\WsL\^hm+2)=-C(m)C(m+l)[—ZA^'A^.+2At+P^'-2A^P[J'] 
IGrr 

2 
+—[(2w+3)(2w+l)vl_+T r_+ (m+l)At+'P^r\ (29c) 

An 

where C2(m) = 1(1+1)--m(tn+l). The matrix elements spin to a (—), and changing the sign of all terms which 
fa,m+i\5Csh\^i,m) and fa ,m+2|3CsL|̂ -$,m) can be contain elements of either the dynamic or static 
obtained from (29b) and (29c) by changing the sub- quadrupole tensors. 
scripts (+) of the tensors which refer to the nuclear It is instructive to note that the terms containing 
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the elements of the static quadrupole tensor have the 
static hyperfme splitting in the denominator. The 
static quadrupole terms can therefore lead to important 
effects even though the terms are too small to produce 
observable splittings in the paramagnetic resonance 
spectrum. The dynamic quadrupole terms and dynamic 
hyperfme terms have coefficients which are comparable 
and these tensors must be of comparable magnitude in 
order to compete in the direct relaxation processes. 

The calculation of the spin-lattice relaxation rates 
requires the evaluation of the square of the matrix 
elements given in (29). For every product of the compo­
nents of the primed tensors, a spectral density defined 
by Eq. (16) must be inserted and the entire result 
multiplied by 1/h. In part II, a detailed application of 
these results is made; but for a case in which all of the 
quadrupole terms are omitted and the static spin 
Hamiltonian is isotropic. 

II. AN APPLICATION 

In this part of the paper, the method described above 
is applied to divalent cobalt ions in the X site of 
lanthanum zinc double nitrate (La-Zn).14 The purpose 
is twofold: to illustrate the development of the spin-
lattice Hamiltonian for a relatively complex situation, 
and to obtain expressions for the relaxation rates with 
as few undertermined constants as possible. We have 
chosen divalent cobalt in this particular site because a 
large amount of experimental data is available for 
comparison with theoretical results.15 

The nuclear spin of the 100% abundant isotope Co59 

is \ so that there are sixteen hyperfme levels. For the 
X site of La-Zn, the static spin Hamiltonian constants 
at 4.2° K are gn = 4.37, gx=4.31, ,4 = 0.00986 cmr1, 
and B = 0.00948 cm-1. No static quadrupole interaction 
has been detected. The spin Hamiltonian constants 
imply that the local symmetry is very nearly cubic. 
The crystal field is presumed to be due to an octahedron 
of water molecules oriented with the [111] axis along 
the trigonal axis of the crystal, and it appears that the 
octahedron is virtually perfect for the X site of La-Zn. 
For other diamagnetic constituents (La-Mg, Bi-Zn, 
etc.), the octahedron has an appreciable trigonal 
distortion. In our treatment we assume that the local 
symmetry is perfectly cubic, the static spin Hamiltonian 
is perfectly isotropic, and that quadrupole effects are 
negligible. In this approximation, we are able to obtain 
expressions for those relaxation processes in which the 
energy of the spin system changes by ^gfiH in terms of 
four constants which depend on the phonon spectrum, 
the sources of the crystal field and the coupling of the 
phonons to the sources of the field. Since there are 22 
relaxation processes that should be competitive and 

14 J. W. Culvahouse, W. Unruh, and R. C. Sapp, Phys. Rev. 
121,1370(1961). 

15 W. P. Unruh and J. W. Culvahouse, following paper [Phys. 
Rev. 129, 2441 (1963)]. 

they all depend on the direction of the applied magnetic 
field relative to the crystal axes, a very complete test 
of the theory can be made. 

1. The Dynamic g Tensor 

A. Divalent Cobalt in a Cubic Field 

The energy levels for divalent cobalt in a cubic field 
are shown schematically in Fig. 2. When the spin-orbit 
interaction is ignored, the lowest states of the 4F term 
are an orbital triplet, the wave functions of which form 
a representation 4T\ of the octahedral group. The spin-
orbit interaction splits the levels of 47\ into three 
Kramers multiplets with the doublet lowest. The 
approximate separation of the levels are given in Fig. 2. 

The theory of the static spin Hamiltonian has been 
given in great detail by Abragam and Pryce16 and a 
simplified but highly instructive discussion has been 
given by Griffith.17 A specialized discussion of cubic 
symmetry is given by Low.18 Comparison of Fig. 2 
with the energy diagram given by Low shows that we 
have omitted the levels which split off from the 2G term. 
Low has discussed the conditions under which this level 
may affect the calculation of the static spin Hamil­
tonian. The success of Abragam and Pryce in calculating 
the spin Hamiltonian parameters for hydrated cobalt 
complexes suggest that we may ignore these levels as 
they did. 

The wave functions of 4T\ may be written in terms of 
ionic 4F wave functions and sorted into the components7 

^=(i)1/2(^l+^2+tA3), (30a) 

(30b) 

(30c) 

2600 A 
* * A 

9S00 

9000 

I 4T, 
<: 

Cubic LS 

" A 

FIG. 2. A schematic diagram of the energy levels for Co2+ in a 
cubic field in units of cm-1. Splittings caused by the spin-orbit 
interaction are shown at the far right. Several levels which arise 
from the ionic 2G level are not shown. 

16 A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London) 
A206, 175 (1951). 

17 See reference 12, p. 304. 
18 W. Low, Phys. Rev. 109, 256 (1958). 
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where the functions ^i, ^2, and ^3 are denned on page 
78 of Van Vleck's paper. The z axis is the [111] direction 
of the octahedron which in our case is the trigonal 
axis of the crystal. These functions have the same 
transformation properties under the operations of the 
octahedral group as do real p wave functions. Therefore, 
the matrix elements of the angular momentum operator 
L between the states (30) are proportional to those of 
an effective operator 1 between p states. 

(*i\L\^)^Hpi\l\pi)9 (31) 

where | pi) is the p state with the same transformation 
properties under the cubic group as the \<t>i). For the 
wave functions given in (30), the value of 8 is —1.5. If 
some of the 4P term is admixed by the cubic field, the 
isomorphism still exists but the value of d is changed and 
in the limit of a very strong field will approach —1.0. 
At the end of this section we show that 5 is near —1.5 
for the present situation. For our calculations, it is 
desirable to use combinations of the wave functions 
(30) which are eigenfunctions of lz: 

11,0)=^, ( 3 i ) 

These wave functions obey the phase convention 
(\l,m))*= (~l)l+m\ly — m)} which is convenient for the 
use of Wigner coefficients in the addition of half-integral 
angular momentum.19 

Using the effective angular momentum 1, the com­
bined effects of the spin-orbit interaction and a trigonal 
distortion can be described very compactly with the 
effective Hamiltonian 

5C.= g/2
2+5X(l-Sfi)} (33) 

where the z axis is the trigonal axis of the crystal, Se is 
the ionic spin and X is the fine structure constant. In 
addition there are small effects due to the admixture of 
the T2, A 2, and P levels by the spin orbit interaction and 
the trigonal field. These effects are rather tedious to 
calculate, but from the work of reference 16, we can be 
sure that they do not affect the g factors by more than 
5%. The difference for g\ j and gi for the X ion of La-Zn, 
corresponds to a value of q/\~0.0l. We completely 
ignore the trigonal splitting and use the effective 
Hamiltonian 

3C/ = !5 \ [7 (y+ l ) -23 /4 ] , (34) 

where J = 1+S«, and 7=5/2, 3/2, 1/2. For the free ion, 
X= —180 cm-1 and therefore 5X«+270 cm-1 which 
implies that the doublet is lowest. The eigenfunctions 
of 5C/ are 

\J,Mj)= £ (lS<mtma\lSJMj)\l9mi)\S,,m8). (35) 
mi,ms 

If the eigenfunctions on the right conform with the 
phase convention used above, the | J,Mj) does also.19 

19 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 1957), p. 51. 

When a magnetic field is applied, the states with 
/ = 1/2 are mixed with those having larger / values. 
The admixture of higher lying levels can safely be 
ignored. Since the magnetic moment operator is a 
vector operator, only the states with J—3/2 will be 
admixed with the / = l / 2 states. We obtain for the 
first-order wave functions in an applied field 

|±>H*,±i> 

E < i ^ l r H | i , ± i > | t , J f / > , (36) 
3b\Mj 

where v=0(2S e+ 51). 

B. The Static and Dynamic g Tensors 

The wave functions (36) are used to calculate the 
static g tensor by defining states \Sm) which are 
eigenfunctions of the effective spin operators S and Sz. 
The g tensor can be deduced by a comparison of the 
matrix elements of y H calculated in the space defined 
by the wave functions | ± ) with the matrix elements of 
H-g-S calculated in the space spanned by the wave 
functions | Sm). This comparison yields the result 

f{+\Hz^\+)\ 2 
go=gxx=gyv = gzz=2 hm I ) = - (5-5) . (37) 

* -* \ Ez / 3 

The dynamic g tensor is gotten by a comparison of 
the matrix elements of V calculated in the space 
defined by | ± ) with the result for XSL=H-g'-S 
calculated in the space defined by \Sm). In this way 
we find for the dynamic g tensor relative to the sym­
metry axes of the crystal 

^ / = 4eF0, 

gxx'=-2eFo+2yfieRe(F2), 

g y y
, ==-2eF 0 -2v3€Re(F 2 ) , 

£*/=g*o/ = 4eRe(Fi) , 

gv/=g .v / = : 4€lm(Fi ) , 

gxy = gyx = 2V3 e Im (F2), 

(38a) 

(38b) 

(38c) 

(38d) 

(38e) 

(38f) 

where e= (5"2/3)(2-5), and 

*o=-<i , i in i , i>/ (§X8) , (39a) 

^ i = - < ! , - * l » " l i , i > / ( ^ ) . (39b) 

F , = - < ! , - * I Hi,i>/(§5X). (39c) 

These results have been greatly simplified by the use 
of the fact that V is Hermitian and invariant under 
time reversal. 

The dynamic hyperfine interaction tensors could be 
calculated by a method analogous to that used for the 
g tensor. In the next section we show that this is not 
necessary because the hyperfine interaction tensor in 



D I R E C T S P I N - L A T T I C E R E L A X A T I O N P R O C E S S E S 2437 

this case can be simply related to the g tensor for an 
arbitrary V. 

Equations (38) can also be used to investigate the 
validity of our approximation by allowing V to be a 
small static trigonal distortion. It can be seen by 
reference to Eq. (33), where the effect of the trigonal 
distortion has been represented in terms of lz, that Fi 
and F2 are zero. We therefore find for small trigonal 
distortions in the present approximation 

i ( g « + g « + ^ ) = §(S-5) = go. (40) 

Inserting the experimental values for the g tensor of 
cobalt ions in the X site, we find 5=— 1.497. When 
account is taken of the small effects from admixture of 
the higher levels by spin-orbit interaction, 8 = — 1.45 
is probably a better choice. We continue to ignore the 
admixture of higher states and use Eqs. (38) with 
5= —1.5, and the slight static trigonal distortion is 
ignored. 

C. Evaluation of the Spectral Densities for (he g Tensors 

Since we are ignoring the admixture of higher lying 
levels by the spin-orbit and trigonal distortion, the 
matrix elements of V will be evaluated between states 
for which the orbital parts are components of the 
representation T\ of the cubic group. This implies that 
only those components of V which transform as the 
irreducible representations contained in the direct 
product TiXTi contribute in first order. This is 
equivalent to our general prescription given in Eq. (22). 
This limits the participating normal modes to the 
gerade vibrational modes of the octahedral complex. 
We use for these six modes the notation of Van Vleck.7 

In Table I we give the decomposition of these modes 
into the irreducible representations of Oh and, for latter 
use, their decomposition for Dz. 

The expansion of V in these normal modes has 
been given by Van Vleck, and he has worked out the 
matrix elements for the basis functions of T\ defined 
by our Eqs. (30). Changing to the basis defined by (40), 
we obtain 

<+liF'j + l > H - l | n - l H - M ^ A (41a) 

(+l\Vf\0)^-(~l\Vf\0)^~a^Q2+(b/V6)Q,f 

-ila^Qs+(b/V6)Qsl (41b) 

( O l H O H M & e / , (41c) 

and the rest are determined by Hermiticity. The 
quantities a and b are as defined by Van Vleck. He has 
worked out their values for a number of ionic terms and 
for both a charge and dipole model for the sources of 
the crystal field. The number a corresponds to the 
constant F (x) in equation (22) for \=E and b is the 
corresponding number for X=r2 . Thus if a and b are 
freely adjusted, the model is just as general as our 
assumption that the octahedron is the source of the 

TABLE I. The gerade normal modes of vibration of an octahe­
dron as defined by Van Vleck and their classification by the 
irreducible representations of Oh and Da. 

Oh Ds 

An Qi Ai: Qi 
E: QiyQz Ar. QA' 
Tt: Q4',Q*',Q*' E: Q9,QS 

E: -Qs',Q* 

crystal field independent of nature of the individual 
sources. WTe are content to carry these constants as 
parameters which may be compared with Van Vleck's 
values after they have been adjusted to fit experimental 
data. This comparison is complicated by the fact that 
the experimental results determine products of these 
numbers with spectral densities of the normal modes. 

WTien the matrix elements (41) are used together 
with the expansion of the \JMj) states given by (44), 
we find 

F 0 - - [MV(15)^]<2/ , (42a) 

Re(Fx) = +[^/(10) 1 / 2 ] [ (V6) 1 /W-av3e 2 ] , (42b) 

Im(F0= -LD/(10)^X(W^l,^f+a^Q^ (42c) 
Re(F2) = -LD/(lS)J^(i)^bQ/-a^Qzl (42d) 

Im(F2) = +[£>/(15)]r[(§ Y%Qb'+a^Q2l (42e) 

where D=~(2e)/38\. 
These values for the Fi when substituted into Eqs. 

(38) yield an expansion of the dynamic g tensor in 
terms of the normal modes of the complex which is a 
realization of Eq. (10). The calculation of the relaxation 
rates require the evaluation of the spectral densities of 
the g tensor by means of Eq. (16). Since the rotational 
symmetry of the double nitrate crystals is only 3m(Dz)y

u 

the equivalence and orthogonality of the normal modes 
when driven by the lattice vibrations will be determined 
by the number of irreducible representations of Dz 

which is the group Gs discussed in part I. The average 
values of the normal modes as defined by Eq. (17) are 
such that 

lQ*,Q*l»=lQ*',Q«'l»=Ciy
 m 

and the average of the products of all other pairs of 
Q's in (42) are zero. If one had cubic symmetry for the 
crystal, one would have d = C 4 and C3=0. If one 
assumes an isotropic phonon spectrum and that the 
components of the octahedron are free to vibrate just 
as an atom in a monoatomic crystal, the result given by 
Van Vleck is obtained: Ci = C2=C4, and C3 = 0. It is 
apparent that the maximum possible value of C3 is 
(C4C2)

1/2 which corresponds to a complete equivalence 
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TABLE II. The spectral densities for the components of the g 
tensor of divalent cobalt in a nearly cubic site but with a phonon 
spectrum with only trigonal symmetry. 

Jxx;xx~ Jvy;yy— (4 t t 4 - f -2a 3 - f tt2+4«l) 

Jxx;yy~ ~ ( 4 « 4 - f 2 a 3 + « 2 — \<X\) 

Jxyixy— ( 4 a 4 + 2 a 3 + « 2 ) 

J zz\xx:=:i J zz;yys= 2*^«;z2~ 1t**l 

Jyz;yz~Jxz\xz—2 (a4~<*3+0:2) 

Jxy;xz = Jxx;zy:=s ~~Jyy\zy — \^)l'2\2aA~0.^—0.2) 

J zz;xy==J zz;zy~ J zz\zx*^J yy;xz~J xx;xz~ J xz;yz:!=z^ 

J xx;xy~J yy'xy^J yz;xy~V 

of the two E representations for averaging over the 
phonon spectrum. 

Note added in proof. X-ray measurements reported 
by David H. Templeton, Allan Zalkin, and J. D. 
Forester [Bull. Am. Phys. Soc. 7, 608 (1962)] show 
that the crystal point group is only 3. This does not 
affect the results obtained here, as the classifications of 
Q's will be the same as for Z>3. 

Twenty one of the spectral densities for the g tensors 
have been tabulated in Table II. The remaining sixty 
can be derived from the symmetry under interchange 
of the first and second pair of indices and the inter­
change of indices within any pair. No superscript is 
used for the spectral densities in the table as we only 
use those for the g tensor in expressing relaxation rates. 
Otherwise the notation is the same as used in part I. 
The constants used in Table II are defined as 

ai= (16/15)ZWCi, a2= (12/5)2WCa, 

ai=(4v2/S)Dla4C«, a4= (2/15)ZWC4> (44) 

where we must have az< 2(a&n)1/2. For cubic symmetry, 
a3=0, and a4=(l/8)ai. No more restriction on the 
a's can be made for an isotropic phonon spectrum. 

We have described the spectral densities of the g 
tensor in terms of four constants. It is apparent that 
their form depends on the choice of the reference axes. 
Our choice of the xyz axes is that chosen by Van Vleck 
because of our choice of basis functions in Eq. (32). 
The spectral densities can be transformed to another 
set of axes by the rule for fourth rank Cartesian tensors. 

2. The Hyperflne Interaction 

Abragam and Pryce16 in their discussion of the 
hyperfine interaction have separated the tensor into 
three parts: 

A=AX+A5 8+A5 d . (45) 

Az, is the contribution due to the orbital angular 
momentum of the 3d electrons, As. is the contribution 
from the admixture of ionic configurations which have 
unpaired s electrons, and ASd arises from the spin 
moment of the 3d electrons. Abragam and Pryce have 

shown that 

. , (46a) 
ASfi=-f/cPg,s, 

where P is the hyperfine interaction constant for a d 
electron. The constant K is an empirical constant which 
measures the admixture of configurations with unpaired 
s electrons. For several hydrated complexes of divalent 
cobalt, K = 0 . 3 2 5 ± 0 . 0 1 . The tensors gL and g5 are 
obtained by the method of the last section by using 
\*L=5l0 and y,s=2/3Se. Asa depends on the matrix 
elements of 

[L(L+l)(I-S)-§(L-S)(L-I)-f(L-I)(L-S)] 

and for divalent cobalt in a cubic field, it is not difficult 
to show that 

AM=P(2/31S)[(12/a)- (215/4)]gL. (47) 

For 8= — 1.5, we see that kSd is clearly negligible, and 
we subsequently ignore it. 

Using the wave functions (35) and the magnetic 
moment operator #L, we find 

(gzz)L= {gxx)h= (gyy)L= - f « , ( 4 8 a ) 

and using ys, we find 

(««)s= (g**)s= (gyy)s= 10/3. (48b) 

On the other hand, all of the changes in g due to V may 
be written in the form 

(A^y)L=-5^y, (49a) 

(Ag<y)fl=2eii. (49b) 

This result can be seen by inspection of Eqs. (38) in 
which all of the changes in g are proportional to 
(51/2/3)(2—b) and it is obvious that the first term in 
the bracket corresponds to the contribution of )xs and 
the second to that of yxL. In the changes of the g tensor 
by V, the fraction of the spin contribution is smaller 
than it is for the cubic field values. Using these results, 
we may write 

(AAij)L^s/Ao=T(Agij)L+s/go, (50) 
where 

( JC+5 ) (S -5 ) 
r = . (51) 

( | K + 5 ) ( 2 - 6 ) 

For 5= -1 .5 and /c=0.325, we find T = 3.25. 
The relation (50) should be valid for either the 

dynamic perturbations described by V or static 
perturbations. The available data on the g and A 
tensors in crystals with a range of slight trigonal 
distortions give a check on the validity of Eq. (50). 
The X ion in (La-Mg)- (H20), (La-Zn)- (D20), and 
(La-Zn) • (H20) provide appropriate data.20 For all of 

20 The D20 in brackets indicates that most of the water of 
hydration is heavy water. 
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AA/A 
XIO* 

O La-Zn(H) 
A Lo-Zn(D) 

O La-Mg(H) 

Ag/g X 10s 

FIG. 3. A plot of the fractional deviation of gu and gi from the 
weak cubic field values go, vs the corresponding deviations of A 
and B from the weak cubic field values A o for a number of double 
nitrate crystals. The line is drawn in accordance with the theory 
of part II, Sec. 2 with T = 3.25. The experimental errors are 
represented by the size of the data points. 

them (g I I +2g i ) /3«4.33 = go and (.4+ 2£)/3~0.0096 
cm_1=ylo. In Fig. 3, we have plotted (g0— gi)/go vs 
(AQ—B)/AQ and (gu — go)/go vs (A—A0)/AQ for these 
three salts. The straight line is drawn for T = 3.25; a 
slightly better fit is obtained with T = 3.0. The experi­
mental errors for the data in Fig. 3 is represented by 
the size of the data points, and one could regard these 
results as a good determination of the constant K. Data 
which we have for other diamagnetic constituents 
agrees with the data plotted, but is less precise. 

For the dynamic A tensor we may write 

I t follows that the spectral densities for the products of 
the components of A' and G' may be written 

Jir, imiGA) («) = AJij., iJGG) («), (53a) 

J a; iJAA) («) = A*/*: i w<™> («), (53b) 
where 

/<y;i» ( M )(«) = i8 ifl f /< / ; i«^ )(«). 

3. Spin-Lattice Relaxation Rates 

The matrix elements of the spin Hamiltonian 
between the levels of the strong field hyperfine structure 
of the Kramers doublet are given in Eqs. (29). In the 
present case, the isotropy of the static spin Hamiltonian 

permits one to write for any applied magnetic field 
direction 

At+=A++=0, A^.^Ao/2, Gx=Go=PHgo. 

We assume that all of the quadrupole eflects are 
negligible and utilize our results for the proportionality 
of the dynamic A and g tensors. We find 

<^ im|3CsL|^-».«>=4F(w)(G«'-tG r ,
/) , (54a) 

<^,m |3C8L|*-i.i»-n>=iC(w)A{G«'+G„ / 

- [ 2 - A ( 2 w + l ) ] ( V / r } , (54b) 

<^ i l ,H.i |3C8L|*-»,m>=iCWA(G« /-G„ /+2tG{ , /)> (54c) 

(^ , f f H . 2 |5CsL|^ ,m)=(^ 1 m- 2 |3CsL|^ ,m)«A 2 , (54d) 

where 

/ ? ( w ) = = { l + A w - ( A 2 / 2 r ) [ / ( / + l ) - w 2 ] } . 

The axes &£ have been defined in part I. In the present 
case, d=\p=x> and these axes are the same for all 
indices and are simply a coordinate system for which 
the f axis is at an angle 6 with the z axis and out of 
the xz plane by an angle <t>. The relaxation rates cal­
culated from Eq. (13) are 

Wm-,m-=lVPF2(m)(Jn;n+JMll), (55a) 

Wm^m+r=^^A2C2(m)lJ^^+Jvn.,vv+2JH;r}V 

- 2f(m) (/rr; „ + / r r . « ) + / W r r ; r r l (55b) 

- 2 / « ; „ + 4 / € , ; t , ) , (55c) 

where «W= (l/h)H2P2 and f(m)= ( 1 /F ) [2+A(2m+1) ] . 
In this notation for the relaxation rates, the minus 
superscript indicates that the f component of the 
electron spin changes by — 1 . The notations for the 
inverse transitions are 

Wm-*m+=OLWm->m , 

Wm+i-+m
+ = aWm->m+i~, 

in which a is the Boltzmann factor. In the approxima­
tion in which the hyperfine correction to the energy 
splittings is ignored, it is simply exp(—Go/kT) where 
T is the lattice temperature. 

The spectral densities used in Eqs. (55) must be 
expressed in terms of those in Table I I by means of a 
coordinate transformation. When this transformation is 
carried out, we obtain for H at an angle 0 with the z 
axis and out of the xz plane by the angle <j>: 

Wm+nT=\*WF(m){(9/4t)ai sin20 cos20 

+ (4a4+2a3+a2)sin20(l+cos20) 
+ 2(a4-a3+a2)[(cos20-sin2(9)2+cos^] 

+ (2«4-a3-a 2 ) (4 sin30 cos0)sin3<£}. (56) 

We do not take the space to write out the angular 
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dependence of the other processes, but use them as 
well as Eq. (56) in the analysis of experimental data in 
the following paper. As a check on the work, it is re­
assuring that the <t> dependence of (56) has a periodicity 
of 2ir/3 which was put in indirectly by the requirements 
on the mean-square amplitudes of the normal modes. 

in . DISCUSSION 

The application of the theory in part I I is rather 
specialized and the major stimulus for it was the 
experimental results obtained for the Overhauser and 
Jeffries effects6 (nuclear orientation produced by 
saturation of allowed or forbidden transitions of the 
hyperfine structure) for this ion which are discussed in 
the next paper. Aside from this, we feel that an exhaus­
tive study of a particular case is a useful preliminary to 
the development of more general results. It is apparent 
that general statements concerning relaxation in the 
hyperfine structure are particularly difficult to make. 
Without a detailed model of the crystal-field sources 
and their thermal motion, there is no way to know 
which of the transition rates Wm+i->m

+ or I;Fm->m+i+ 

will dominate so to allow the development of the 
nuclear orientation by the Overhauser process. We may 
even have T ^ m _ m + i + « ^ m + i _ m

+ » W m - + m
+ which will 

cause a Jeffries-type nuclear orientation to fail. 
I t is apparent that in cases where the hyperfine 

interaction is sensitive to the crystal field perturbations, 
the hyperfine effects may compete with the effects from 
the modulation of the g tensor even in what is usually 
regarded as a strong field. The hyperfine interaction is 
sure to be the dominant effect in many Kramers ions 
at sufficiently low field and the field dependence of the 
over-all relaxation rate of the system such as might 
be measured in a concentrated salt would be complicated 
by the hyperfine relaxation process. I t should be 
possible in many cases to estimate the relative effective­
ness of the modulation of the g and A tensors from the 
change in the static values in environments with 
different crystal fields. The statement that the corre­
sponding elements of the dynamic g and A tensors are 
proportional must be justified by a complete analysis 
such as was made in part I I . 

No attempt has been made to treat any relaxation 
processes other than the direct process. I t is apparent 
that when a resolved hyperfine interaction is present, 
the complications of the direct processes alone offer a 
considerable challenge; particularly, if (as may happen) 
almost all of the processes are of comparable strength. 
For the ions of the iron group, there should exist a 
temperature below which the Raman and Orbach 
processes are negligible, and (at least for highly dilute 
salts) a lower temperature above which the phonon 
bottleneck is not serious. There is always the possibility 
noted by Van Vleck21 that some sort of defect levels 

21 J. H. Van Vleck, in Quantum Electronics, edited by C. H. 
Townes (Columbia University Press, New York, 1960), p. 392. 

are present in the crystal that are near the ground state 
of the paramagnetic ion and which will serve as relaxa­
tion centers. This complication is effectively eliminated 
by the use of very low concentrations. Low concentra­
tions are also essential in order to eliminate the cross-
relaxation process discovered by Bloembergen.22 We 
have neglected the possible effects of local modes which 
arise from the fact that the paramagnetic ion represents 
an impurity in a lattice of diamagnetic ions. I t is easy 
to find salts for which the mass defect is very slight, but 
the paramagnetic ion may have a considerably different 
ionic radius than the diamagnetic ion and produce a 
local strain field. I t appears from the work of Klemens23 

that local-mode effects are important only at relatively 
high temperatures. 

The definition of the static and dynamic spin 
Hamiltonian in part I is quite general and therefore 
the description of the direct spin-lattice relaxation in 
terms of the spectral densities of the dynamic spin 
Hamiltonian should apply to a wide variety of problems. 
I t is apparent that the introduction of the dynamic 
spin Hamiltonian does not save any computational 
labor, nor does it circumvent the problem of the 
validity of the crystal-field view. I t does permit one to 
easily find the correct states between which one wishes 
to calculate transition rates for any direction of the 
applied field. I t also permits one to isolate properties of 
the ion and the symmetry of the environment from 
other problems in much the same way that the static 
spin Hamiltonian isolates those properties in the 
description of the energy levels. 

One may take the view that the spectral density 
tensors are constants to be determined by the experi­
mental measurement of direct spin-lattice relaxation 
rates just as the parameters of the static spin Hamil­
tonian are to be determined by experimental measure­
ment of the energy levels. Just as the number of 
parameters in the static spin Hamiltonian are limited by 
symmetry considerations, so are those in the dynamic 
spin Hamiltonian. The spectral densities dealt with in 
the present paper are fourth rank Cartesian tensors and 
are always symmetric in the interchange of the first 
and second pair of indices. Therefore, the number of 
independent components consistent with a symmetry 
group G is the same as the number for the piezo-optical 
tensor.24 The possibility of considerable angular 
dependence for the relaxation rates even in cases where 
the symmetry is high, as indicated by Eq. (56), suggests 
that a complete definition of the spectral density 
tensors may be possible. This is particularly likely when 
the spectral densities for different combinations of the 
parameters may be related by the properties of the ion 
alone as was possible for divalent cobalt. 

22 N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, 
Phys. Rev. 114, 445 (1959). 

23 P. G. Klemens, Phys. Rev. 125, 1795 (1962). 
24 B. Higman, Applied Group-Theoretic and Matrix Methods 

(Clarendon Press, Oxford, 1955), pp. 258, 261, 


